
International Journal of Scientific & Engineering Research Volume 12, Issue 8, August-2021                                                      723 
ISSN 2229-5518  
 

IJSER © 2021 

http://www.ijser.org 

An investigation of Kepler’s first law of 
planetary motion 

 

Introduction: 

In this investigation, my aim is to find a link between the eccentricity of the planets and their 

orbital shapes, which is based on the three laws created by Johannes Kepler in the 17th 

century. 

I chose this topic because I have always liked the field of astrophysics and particularly how 

celestial bodies such as planets and asteroids move with respect to the stars that they orbit. 

And when I read that Kepler created three laws of planetary motion, I knew that this could be 

a good topic for a math investigation.  

 

Background information: 

 Between 1609 and 1619, Johannes Kepler published three laws of planetary motion 

with the help of data collected by his mentor Tycho Brahe. 

 In these laws, Kepler improved upon the heliocentric model of the solar system put 

forth by Copernicus by saying that instead of circular orbits, planets in the solar 

system actually revolved around the sun in elliptical orbits, in which their velocities 

varied depending on their position in the orbit with respect to their distance from the 

sun. 

 The three laws Kepler put forth are: 

o The law of ellipses: The path of any planet about the Sun is elliptical in shape, 

with the centre of the Sun located at one focus of the ellipse  

o The law of equal areas: A line drawn from the centre of the Sun to the centre 

of a planet sweeps out equal areas in equal time intervals  
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o The law of harmonies: The ratio of the squares of the periods of any two 

planets is equal to the ratio of the cubes of the lengths of their semimajor 

orbital axes 

 

o Above is the diagrammatic representation of the first and second laws. This 

investigation is going to find the relationship between the position of the sun 

(a focus / centre of the eclipse / or in between) and its effect on the shape of 

planetary orbits. 

 

 In this investigation, multiple theories and problems will be used to first prove 

Kepler’s first law of planetary motion, and then investigate the effect of eccentricity 

in that particular model. 

 

Newton’s laws of universal gravitation 

Even though the laws of planetary motion were formulated by Johannes Kepler, it was Sir 

Isaac Newton who gave mathematical proof that the laws were true. He did this with the help 

of his law of universal gravitation which has the following properties: 

𝐹 ∝ 𝑀 ∙ 𝑚 

𝐹 ∝
1

𝑟2
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The first property says that the gravitational force(F), is directly proportional to the product 

of the two masses in question, which is the sun and a planet in the case of the solar system (M 

and m). The second property says that the gravitational force is inversely proportional to the 

distance between the two objects. These two properties combine to give us the formula for 

gravitational force: 

𝐹 = 𝐺 ∙
𝑀∙𝑚

𝑟2                                                         [1] 

Where G is the gravitational constant given by Isaac Newton which has a value of 6.67 ∙

10−11. When this formula is used with the proper substituted values, the gravitational force 

between the two objects is obtained. 

 

Another formula given by Newton is: 

𝐹 = 𝑚 ∙ 𝑎                                                            [2] 

Where “m” is the mass of the object and “a” is the acceleration of the object. This formula 

comes from Newton’s second law of motion. And when you combine the equations 1 and 2, 

we get a new equation for acceleration: 

𝑚 ∙ 𝑎 = 𝐺 ∙
𝑀 ∙ 𝑚

𝑟2
 

𝒂 = 𝑮 ∙
𝑴

𝒓𝟐                                                             [3] 

Now that we know the formula for gravitational force, we can apply it to a classical problem 

called the two body problem. 

 

The two-body problem 

The two-body problem describes how two gravitating objects move as a function of time. 

This problem uses vectors, differential calculus and Newton’s law of gravitation to create a 

relationship between the two objects. 
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Before solving the problem, we must visualize it. 

 

In the image above, the vectors r1 and r2 are shown to be going from the reference origin O to 

the star and the planet. The star has a mass of “M” and the planet has a mass of “m”. The 

vectors R, r1, and r2 are position vectors. The vectors f1 and f2 show the gravitational force 

going from the star to the planet, and following Newton’s third law of motion, from the 

planet to the star. Now we can solve the two body problem. 

 

Consider that: 

𝑟 = 𝑟 ∙ �̂� 

The above formula says that the vector r is the combination of the scalar quantity r and the 

unit vector r. this will be useful later. 

 

Now let us go back to the diagram. From the diagram and Newton’s law of universal 

gravitation that we saw earlier, we can see that the gravitational force in this situation will be: 
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𝐹 = 𝐺 ∙
𝑀 ∙ 𝑚

𝑟2
 

But since now we are dealing in vectors, we must make a small change to it: 

�⃗� = 𝐺 ∙
𝑀∙𝑚

𝑟2 ∙ �̂�                                                          [4] 

By multiplying the unit vector, we have made the quantity “F” a vector. However in the 

diagram, the “F” quantities are in opposite directions, and if we consider them to be equal in 

magnitude and apply Newton’s second law of motion, we get: 

�⃗�1 = 𝑀 ∙ �⃗�1                                                              [5] 

�⃗�2 = 𝑚 ∙ �⃗�2                                                              [6] 

These equations will help us find the acceleration of these bodies caused by their 

gravitational fields. 

From kinematics, it is known that acceleration is the derivative of velocity with respect to 

time, and velocity is the derivative of displacement with respect to time. So in this case, it 

becomes: 

�⃗� =
𝑑�⃗�

𝑑𝑡
=

𝑑2𝑟

𝑑𝑡2
 

Putting this back into equations 5 and 6 we get: 

�⃗�1 = 𝑀 ∙
𝑑2𝑟1⃗⃗⃗⃗⃗

𝑑𝑡2                                                              [7] 

�⃗�2 = 𝑚 ∙
𝑑2𝑟2⃗⃗⃗⃗⃗

𝑑𝑡2                                                              [8] 

And when we combine the above equations with equation 4 and the second law of motion, 

we get: 

�⃗�1 → 𝑀 ∙
𝑑2𝑟1⃗⃗⃗ ⃗

𝑑𝑡2
= 𝐺 ∙

𝑀 ∙ 𝑚

𝑟2
∙ �̂�  

�⃗�1 →
𝑑2𝑟1⃗⃗⃗⃗⃗

𝑑𝑡2 = 𝐺 ∙
𝑚

𝑟2 ∙ �̂�                                                     [9] 

�⃗�2 → 𝑚 ∙
𝑑2𝑟2⃗⃗⃗⃗

𝑑𝑡2
= −𝐺 ∙

𝑀 ∙ 𝑚

𝑟2
∙ �̂�  
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�⃗�2 →
𝑑2𝑟2⃗⃗⃗⃗⃗

𝑑𝑡2 = −𝐺 ∙
𝑀

𝑟2 ∙ �̂�                                                     [10] 

Note that “M” and “m” have been cancelled in equations 9 and 10 respectively. Also note 

that the RHS of equation 10 has a negative sign to it. This is because it is in the opposite 

direction of F1. 

 

Now, the final step of the two body problem is to combine equations 9 and 10. For this, we 

use a vector property called resolution of vectors: 

𝑟 = 𝑟1⃗⃗⃗ ⃗ + 𝑟2⃗⃗⃗⃗  

This property tells us that the combination of vectors r1 and r2 gives us the vector r. When we 

derive the equation twice, we get: 

𝑑2𝑟

𝑑𝑡2 =
𝑑2𝑟1⃗⃗⃗⃗⃗

𝑑𝑡2 +
𝑑2𝑟2⃗⃗⃗⃗⃗

𝑑𝑡2                                                        [11] 

Now we subtract equation 9 from equation 10 using equation 11: 

𝑑2𝑟

𝑑𝑡2
=

𝑑2𝑟1⃗⃗⃗ ⃗

𝑑𝑡2
+

𝑑2𝑟2⃗⃗⃗⃗

𝑑𝑡2
 

𝑑2𝑟

𝑑𝑡2
= −𝐺 ∙

𝑀

𝑟2
∙ �̂� − 𝐺 ∙

𝑚

𝑟2
∙ �̂� 

𝑑2𝑟

𝑑𝑡2 + 𝐺 ∙
(𝑀+𝑚)

𝑟2 ∙ �̂� = 0                                             [12] 

Note that after subtraction, the RHS was brought to the LHS and became positive while the 

RHS got the value of 0. 

 

Now, the equation 12 must be solved to find the time evolution of the distance vector (r) 

between the planet and the star. For this we will use a method called the cross product of 

vectors. 

 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 12, Issue 8, August-2021                                                      729 
ISSN 2229-5518  
 

IJSER © 2021 

http://www.ijser.org 

The cross product of vectors 

To understand how the equation 12 describes a planet’s motion around a star, we use the 

cross product of vectors.  

If there are vectors A and B, the cross product of these vectors would be: 

𝐴 × �⃗⃗� = |𝐴| ∙ |�⃗⃗�| ∙ sin 𝜃 ∙ �̂� 

In the above equation, the magnitude of vectors A and B is multiplied by the sine of the angle 

created between them and the unit vector n, which is perpendicular to vectors A and B. 

 

Now we cross the vector r with equation 12: 

𝑟 × (
𝑑2𝑟

𝑑𝑡2
+ 𝐺 ∙

(𝑀 + 𝑚)

𝑟2
∙ �̂� = 0) 

(𝑟 ×
𝑑2𝑟

𝑑𝑡2
) + (𝐺 ∙

(𝑀 + 𝑚)

𝑟2
∙ 𝑟 × �̂�) = 0 

Since the cross product of the vector r and the unit vector r is 0 (the angle between them is 0, 

and the sine of 0 is 0), we get: 

𝑟 ×
𝑑2𝑟

𝑑𝑡2 = 0                                                         [13] 

Note that: 

𝑟 ×
𝑑2𝑟

𝑑𝑡2
=

𝑑

𝑑𝑡
(𝑟 ×

𝑑𝑟

𝑑𝑡
) 

Therefore we can conclude that: 

𝑟 ×
𝑑𝑟

𝑑𝑡
= ℎ⃗⃗                                                           [14] 
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In the above equation, the vector h is a constant vector obtained from the RHS. The vector h 

is the angular momentum which we will use later. When equation 14 is visualised, we get: 

 

In the picture above, the vectors v and r can be seen perpendicular to the vector h, which is 

the constant vector from the equation above. The curved line in the image is the path of the 

planet. The dotted line represents the plane created by the creation of vector h, in which the 

planet travels. Therefore at this point we know that the planet only travels in one plane. Now 

that it has become a 2-dimentional space instead of a 3-dimentional one, we can use the plane 

polar co-ordinate system to further solve the problem. 

 

The plane polar co-ordinate system 

Now that we can imagine the situation in 2D, we can use polar co-ordinates and 

trigonometry: 
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The diagram above says that the distance in the horizontal direction (x-axis) is r⋅cos𝜃, and 

the distance in the vertical direction is r⋅sin𝜃. This is obtained from using polar co-

ordinates and trigonometry. 

 

Now the vector r can be defined as a column vector: 

𝑟 = (𝑟∙𝑐𝑜𝑠𝜃
𝑟∙𝑠𝑖𝑛𝜃

)                                                                           [15] 

This can be simplified to: 

𝑟 = 𝑟 ∙ (
𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
) 

Now, since 

𝑟 = 𝑟 × �̂� 

�̂� = (𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

)                                                                              [16] 
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Following the angular momentum model, we can define another constant vector in the 

plane polar co-ordinate system which is perpendicular to the vectors present: 

 

  

The constant unit vector 𝜃 can be defined as: 

𝜃 = (−𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃

)                                                                         [17] 

The above can be figured out by the same method used for the vector r. Now that we have all 

the components from our plane polar co-ordinate system, we can calculate the vector h. 

 

Formulating the equation for distance between the planet and the star 

To formulate the equation for distance, all the equations created up till now must be 

combined: 

𝑟 = 𝑟 ∙ �̂� 

𝑑𝑟

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑟 ∙ �̂�) 

𝑑𝑟

𝑑𝑡
=

𝑑𝑟

𝑑𝑡
∙ �̂� +

𝑑�̂�

𝑑𝑡
∙ 𝑟 
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Using equation 16: 

𝑑𝑟

𝑑𝑡
=

𝑑𝑟

𝑑𝑡
∙ �̂� +

𝑑

𝑑𝑡
(

𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
) ∙ 𝑟 

Using the chain rule: 

𝑑𝑟

𝑑𝑡
=

𝑑𝑟

𝑑𝑡
∙ �̂� +

𝑑𝜃

𝑑𝑡
∙

𝑑

𝑑𝜃
(

𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
) ∙ 𝑟 

𝑑𝑟

𝑑𝑡
=

𝑑𝑟

𝑑𝑡
∙ �̂� +

𝑑𝜃

𝑑𝑡
∙ (

−𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃
) ∙ 𝑟 

Using equation 17: 

𝑑𝑟

𝑑𝑡
=

𝑑𝑟

𝑑𝑡
∙ �̂� +

𝑑𝜃

𝑑𝑡
∙ 𝜃 ∙ 𝑟 

Now we can use this equation and substitute it in equation 14: 

ℎ⃗⃗ = 𝑟 ×
𝑑𝑟

𝑑𝑡
 

ℎ⃗⃗ = 𝑟 × (
𝑑𝑟

𝑑𝑡
∙ �̂� +

𝑑𝜃

𝑑𝑡
∙ 𝜃 ∙ 𝑟) 

ℎ⃗⃗ = (𝑟 × �̂� ∙
𝑑𝑟

𝑑𝑡
) + (𝑟 × 𝜃 ∙

𝑑𝜃

𝑑𝑡
∙ 𝑟) 

ℎ⃗⃗ = 𝑟 × 𝜃 ∙
𝑑𝜃

𝑑𝑡
∙ 𝑟                                                                 [18] 

Note that the first bracket on the RHS becomes 0 since the cross product of the vector r and 

the unit vector r is 0. 

 

From equation 17, we can make: 

ℎ⃗⃗ = �̂� × 𝜃 ∙
𝑑𝜃

𝑑𝑡
∙ 𝑟2                                                                [19] 

Note that the vector r was resolved to get the unit vector r and the scalar quantity r. The scalar 

quantity was multiplied to the scalar quantity already present, therefore resulting in equation 

19. 
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In equation 19, the cross product of unit vectors r and 𝜃 will be perpendicular to the rest of 

the vectors in the model. This cross product will be the unit vector called h. Therefore 

we have another equation: 

ℎ⃗⃗ = 𝑟2 ∙
𝑑𝜃

𝑑𝑡
∙ ℎ̂                                                                                  [20] 

 

From equation 20 and the principle of the resolution of vectors, it can be formulated 

that: 

ℎ⃗⃗ = ℎ ∙ ℎ̂ 

ℎ = 𝑟2 ∙
𝑑𝜃

𝑑𝑡
                                                                                        [21] 

 

Now that we have the value for the scalar quantity h, we can insert it in earlier 

equations and formulate an equation for angular momentum: 

𝑑2𝑟

𝑑𝑡2
+ 𝐺 ∙

(𝑀 + 𝑚)

𝑟2
∙ �̂� = 0 

In the above equation, the value of acceleration is still unknown, for that the velocity 

equation can be derived: 

𝑑𝑟

𝑑𝑡
=

𝑑𝑟

𝑑𝑡
∙ �̂� +

𝑑𝜃

𝑑𝑡
∙ 𝜃 ∙ 𝑟 

𝑑2𝑟

𝑑𝑡2 = (
𝑑2𝑟

𝑑𝑡2 ∙ �̂� +
𝑑𝑟

𝑑𝑡
∙

𝑑�̂�

𝑑𝑡
) + (

𝑑𝑟

𝑑𝑡
∙

𝑑𝜃

𝑑𝑡
∙ 𝜃 +

𝑑2𝜃

𝑑𝑡2 ∙ 𝑟 ∙ 𝜃 +
𝑑𝜃

𝑑𝑡
∙

𝑑�̂�

𝑑𝑡
∙ 𝑟)                               [22] 

Note that the product rule has been used for differentiation of two terms and three 

terms. In the above equation: 

𝑑𝜃

𝑑𝑡
=

𝑑𝜃

𝑑𝑡
∙

𝑑

𝑑𝜃
(

−𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃
) 

𝑑�̂�

𝑑𝑡
=

𝑑𝜃

𝑑𝑡
∙ −�̂�                                                                                        [23] 

This is because of equation 16. 
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Now, equation 22 becomes: 

𝑑2𝑟

𝑑𝑡2
= (

𝑑2𝑟

𝑑𝑡2
∙ �̂� +

𝑑𝑟

𝑑𝑡
∙

𝑑�̂�

𝑑𝑡
) + (

𝑑𝑟

𝑑𝑡
∙

𝑑𝜃

𝑑𝑡
∙ 𝜃 +

𝑑2𝜃

𝑑𝑡2
∙ 𝑟 ∙ 𝜃 +

𝑑𝜃

𝑑𝑡
∙ −�̂� ∙ 𝑟) 

After opening the brackets we get: 

𝑑2𝑟

𝑑𝑡2
=

𝑑2𝑟

𝑑𝑡2
∙ �̂� + 2 ∙

𝑑𝑟

𝑑𝑡
∙

𝑑𝜃

𝑑𝑡
∙ 𝜃 + 𝑟 ∙

𝑑2𝜃

𝑑𝑡2
∙ 𝜃 − 𝑟 ∙ (

𝑑𝜃

𝑑𝑡
)

2

∙ �̂� 

𝑑2𝑟

𝑑𝑡2 = �̂� (
𝑑2𝑟

𝑑𝑡2 − 𝑟 (
𝑑𝜃

𝑑𝑡
)

2

) + 𝜃 (2 ∙
𝑑𝑟

𝑑𝑡
∙

𝑑𝜃

𝑑𝑡
+ 𝑟 ∙

𝑑2𝜃

𝑑𝑡2)                     [24] 

 

Now we substitute equation 24 into equation 12: 

�̂� (
𝑑2𝑟

𝑑𝑡2 − 𝑟 (
𝑑𝜃

𝑑𝑡
)

2

) + 𝐺 ∙
(𝑀+𝑚)

𝑟2 ∙ �̂� = 0                                            [25] 

Note that only half of the equation 24 was substituted. This is because the theta part of 

the equation is used for other investigations of planetary motion and does not 

contribute to shapes of the orbit anymore. 

�̂� ((
𝑑2𝑟

𝑑𝑡2 − 𝑟 (
𝑑𝜃

𝑑𝑡
)

2

) + 𝐺 ∙
(𝑀+𝑚)

𝑟2 ) = 0                                             [26] 

And since: 

ℎ = 𝑟2 ∙
𝑑𝜃

𝑑𝑡
 

ℎ

𝑟2
=

𝑑𝜃

𝑑𝑡
 

Equation 26 becomes: 

�̂� ((
𝑑2𝑟

𝑑𝑡2
− 𝑟 ∙

ℎ

𝑟4
) + 𝐺 ∙

(𝑀 + 𝑚)

𝑟2
) = 0 

�̂� ((
𝑑2𝑟

𝑑𝑡2
−

ℎ

𝑟3
) + 𝐺 ∙

(𝑀 + 𝑚)

𝑟2
) = 0 
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Now inside the bracket, there are no vectors, and that is what we need to calculate the 

orbital shape. So: 

(
𝑑2𝑟

𝑑𝑡2 −
ℎ

𝑟3) + 𝐺 ∙
(𝑀+𝑚)

𝑟2 = 0                                                                  [27] 

 

The equation 27 cannot be solved as a function of time, so a unit transformation has to 

be made using substitution differentiation so that it can be solved in terms of r with 

respect to 𝜃. 

 

Let: 

𝑢 =
1

𝑟
                                                                                                        [28] 

𝑟 =
1

𝑢
                                                                                                        [29] 

 

Using the chain rule: 

𝑑𝑟

𝑑𝑡
=

𝑑𝑟

𝑑𝑢
∙

𝑑𝑢

𝑑𝑡
                                                                                 [30] 

 

Using equation 29, in equation 30: 

𝑑𝑟

𝑑𝑢
=

−1

𝑢2                                                                                        [31] 

 

Therefore equation 30 becomes: 

𝑑𝑟

𝑑𝑡
= −𝑟2 ∙

𝑑𝑢

𝑑𝑡
 

Using chain rule: 

𝑑𝑟

𝑑𝑡
= −𝑟2 ∙

𝑑𝑢

𝑑𝜃
∙

𝑑𝜃

𝑑𝑡
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Using equation 21: 

𝑑𝑟

𝑑𝑡
= −𝑟2 ∙

𝑑𝑢

𝑑𝜃
∙

ℎ

𝑟2
 

𝑑𝑟

𝑑𝑡
=

𝑑𝑢

𝑑𝜃
∙ −ℎ                                                                              [32] 

Differentiating equation 32: 

𝑑2𝑟

𝑑𝑡2
= (

𝑑

𝑑𝑡

𝑑𝑢

𝑑𝜃
∙ −ℎ) + (

𝑑𝑢

𝑑𝜃
∙

𝑑ℎ

𝑑𝑡
) 

𝑑2𝑟

𝑑𝑡2 =
𝑑

𝑑𝑡

𝑑𝑢

𝑑𝜃
∙ −ℎ                                                                         [33] 

 

Using chain rule in equation 33: 

𝑑2𝑟

𝑑𝑡2
=

𝑑𝜃

𝑑𝑡
∙

𝑑2𝑢

𝑑𝜃2
∙ −ℎ 

Using equation 21: 

𝑑2𝑟

𝑑𝑡2
= −ℎ2 ∙

1

𝑟2
∙

𝑑2𝑢

𝑑𝜃2
 

Using equation 28: 

𝑑2𝑟

𝑑𝑡2 = −ℎ2 ∙ 𝑢2 ∙
𝑑2𝑢

𝑑𝜃2                                                                    [34] 

 

Now equation 28 can be substituted in equation 27: 

(
𝑑2𝑟

𝑑𝑡2
−

ℎ

𝑟3
) + 𝐺 ∙

(𝑀 + 𝑚)

𝑟2
= 0 

(−ℎ2 ∙ 𝑢2 ∙
𝑑2𝑢

𝑑𝜃2
−

ℎ

𝑟3
) + 𝐺 ∙

(𝑀 + 𝑚)

𝑟2
= 0 

−ℎ2 ∙ 𝑢2 ∙
𝑑2𝑢

𝑑𝜃2
−

ℎ

𝑟3
= −𝐺 ∙

(𝑀 + 𝑚)

𝑟2
 

𝑑2𝑢

𝑑𝜃2 + 𝑢 =  𝐺 ∙
(𝑀+𝑚)

ℎ2                                                                     [35] 
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Now we can calculate u in terms of 𝜃, and then use equation 29 to find it in terms of r, 

which was our primary objective for doing the unit transformation. 

 

Now, a function u is required to be substituted in equation 35. This function must give 

out a constant when differentiated twice and added to itself. This is because the RHS of 

the equation 35 is a constant. For example: 

 

𝑢(𝜃) = 𝐴 ∙ sin 𝜃 + 𝑘                                                                                     [36] 

𝑑2𝑢

𝑑𝜃2
= 𝐴 ∙ − sin 𝜃 

𝑢(𝜃) +
𝑑2𝑢

𝑑𝜃2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Or: 

𝑢(𝜃) = 𝐴 ∙ cos 𝜃 + 𝑘                                                                                   [37] 

𝑑2𝑢

𝑑𝜃2
= 𝐴 ∙ − cos 𝜃 

𝑢(𝜃) +
𝑑2𝑢

𝑑𝜃2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

Combining equations 36 and 37, u can be defined as: 

𝑢(𝜃) = 𝑘 ∙ cos(𝜃 − 𝜑) + 𝐺 ∙
(𝑀+𝑚)

ℎ2                                                    [38] 

In equation 38, k is the constant (A in equations 36 and 37) and phi is the reference angle. 

This value of the function u can be verified if it is differentiated twice and substituted in 

equation 35. 
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Equation 38 can be written as: 

𝑢(𝜃) = 𝐺 ∙
(𝑀+𝑚)

ℎ2
(1 + 𝑒 ∙ cos 𝜃 − 𝜑)                                                  [39] 

Here, e is a constant which has a value of: 

𝑒 =
𝑘

𝐺 ∙
(𝑀 + 𝑚)

ℎ2

 

Now that we have a definite value of u, we can define r using the equation 29: 

𝑟(𝜃) =
ℎ2

𝐺(𝑀+𝑚)
(

1

1+𝑒∙cos 𝜃
)                                                                     [40] 

Note that the value of phi has been considered to be 0. 

 

Now we have a value of the function r with respect to its angle, which tells us how the 

distance between a star and a planet varies as a function of the angle, which is basically the 

shape of the orbit. Still, we need to calculate the value of h, since it is unknown. 

 

Orbit of a planet 
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In the diagram above,  

- O= the centre of the orbit 

- c= the distance between the star and the centre of the orbit 

- a= the distance between the star and the orbit 

- r= the distance between the star and the planet 

- 𝜃= the angle between the star and the planet with respect to the centre 

- Perihelion: the point in a planet’s orbit where it is closest to the star 

- Aphelion: the point in a planet’s orbit where it is farthest from the star 

 

Eccentricity of an orbit is: 

𝑒 =
𝑐

𝑎
 

 

Perihelion can be defined as: 

𝑎 − 𝑐 

𝑎 − 𝑎𝑒 

𝑎(1 − 𝑒)                                                                                                    [41] 

 

Aphelion can be defined as: 

𝑎 + 𝑐 

𝑎 + 𝑎𝑒 

𝑎(1 + 𝑒)                                                                                                   [42] 

 

Value of h 

Now, the value of perihelion can be used to further dissociate equation 40 and find the value 

of h: 
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𝑟 =
ℎ2

𝐺(𝑀 + 𝑚)
(

1

1 + 𝑒 ∙ cos 𝜃
) 

𝑎(1 − 𝑒) =
ℎ2

𝐺(𝑀 + 𝑚)
(

1

1 + 𝑒
) 

Note that the cos function disappeared. This is because at the perihelion, 𝜃 becomes 0, and 

cos of 0 is 1. 

ℎ2 = 𝑎(1 − 𝑒)2 ∙ 𝐺(𝑀 + 𝑚) 

 

The distance between a planet and a star 

Now that we have an expression for h2, we can substitute it in equation 40: 

𝑟 =
𝑎(1 − 𝑒)2 ∙ 𝐺(𝑀 + 𝑚)

𝐺(𝑀 + 𝑚)
(

1

1 + 𝑒 ∙ cos 𝜃
) 

𝑟 =
𝑎(1−𝑒)2

1+𝑒∙cos 𝜃
                                                                                         [43] 

 

Visualising equation 43 

When the appropriate values are substituted in the equation and the graph is plotted, the 

shape of the orbit depends on the “e” value in the equation which represents the eccentricity 

of the orbit. 
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The image above shows the orbital shapes with respect to the eccentricity values. 

 

Conclusion 

After all the calculations, the relationship between eccentricity and the shape of the orbit has 

been determined. As the value of eccentricity increases, the shape of the orbit goes more and 

more away from the circular orbit, as is shown in the table below. 

Eccentricity value Shape of orbit 

0 Circle 

0 < e < 1 Ellipse  

1 Parabola  

e > 1 Hyperbola 

 

Therefore, the relationship between the eccentricity values and the shape of orbits has been 

determined, answering the research question with conclusive evidence.  

 

If this investigation were to be extended, the relationship between the eccentricity value and 

the acceleration of planets around the orbits can be explored. This is a viable further 

investigation because as the shape of the orbit becomes more elliptical, the acceleration of the 

planet changes throughout the path of its orbit whereas if it is a circular orbit, the acceleration 

of the planet will be uniform throughout the period of revolution. 
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